The scripts below automate this process. The first one, downloadVixFutures.py , gets the data from cboe, saves each file in a data directory and then combines them in a single csv file, vix_futures.csv
The second script reconstructVXX.py parses the vix_futures.csv, calculates the daily returns of VXX and saves results to reconstructedVXX.csv.
To check the calculations, I've compared my simulated results with the SPVXSTR index data, the two agree pretty well, see the charts below.
Note: For a fee, I can provide support to get the code running or create a stand-alone program, contact me if you are interested.
--------------------------------source codes--------------------------------------------
Code for getting futures data from CBOE and combining it into a single table
downloadVixFutures.py
#------------------------------------------------------------------------------- # Name: download CBOE futures # Purpose: get VIX futures data from CBOE, process data to a single file # # # Created: 15-10-2011 # Copyright: (c) Jev Kuznetsov 2011 # Licence: BSD #------------------------------------------------------------------------------- #!/usr/bin/env python from urllib import urlretrieve import os from pandas import * import datetime import numpy as np m_codes = ['F','G','H','J','K','M','N','Q','U','V','X','Z'] #month codes of the futures codes = dict(zip(m_codes,range(1,len(m_codes)+1))) dataDir = os.path.dirname(__file__)+'/data' def saveVixFutureData(year,month, path, forceDownload=False): ''' Get future from CBOE and save to file ''' fName = "CFE_{0}{1}_VX.csv".format(m_codes[month],str(year)[-2:]) if os.path.exists(path+'\\'+fName) or forceDownload: print 'File already downloaded, skipping' return urlStr = "http://cfe.cboe.com/Publish/ScheduledTask/MktData/datahouse/{0}".format(fName) print 'Getting: %s' % urlStr try: urlretrieve(urlStr,path+'\\'+fName) except Exception as e: print e def buildDataTable(dataDir): """ create single data sheet """ files = os.listdir(dataDir) data = {} for fName in files: print 'Processing: ', fName try: df = DataFrame.from_csv(dataDir+'/'+fName) code = fName.split('.')[0].split('_')[1] month = '%02d' % codes[code[0]] year = '20'+code[1:] newCode = year+'_'+month data[newCode] = df except Exception as e: print 'Could not process:', e full = DataFrame() for k,df in data.iteritems(): s = df['Settle'] s.name = k s[s<5] = np.nan if len(s.dropna())>0: full = full.join(s,how='outer') else: print s.name, ': Empty dataset.' full[full<5]=np.nan full = full[sorted(full.columns)] # use only data after this date startDate = datetime.datetime(2008,1,1) idx = full.index >= startDate full = full.ix[idx,:] #full.plot(ax=gca()) print 'Saving vix_futures.csv' full.to_csv('vix_futures.csv') if __name__ == '__main__': if not os.path.exists(dataDir): print 'creating data directory %s' % dataDir os.makedirs(dataDir) for year in range(2008,2013): for month in range(12): print 'Getting data for {0}/{1}'.format(year,month+1) saveVixFutureData(year,month,dataDir) print 'Raw wata was saved to {0}'.format(dataDir) buildDataTable(dataDir)
Code for reconstructing the VXX
reconstructVXX.py
""" Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ X = DataFrame.from_csv('vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2','ret']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info Y.set_value(date,'first',first.price(date)) Y.set_value(date,'second',second.price(date)) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',100*dr/dt) Y.set_value(date,'w2',100*(dt-dr)/dt) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')